Search results for "Least angle regression"

showing 5 items of 5 documents

A differential-geometric approach to generalized linear models with grouped predictors

2016

We propose an extension of the differential-geometric least angle regression method to perform sparse group inference in a generalized linear model. An efficient algorithm is proposed to compute the solution curve. The proposed group differential-geometric least angle regression method has important properties that distinguish it from the group lasso. First, its solution curve is based on the invariance properties of a generalized linear model. Second, it adds groups of variables based on a group equiangularity condition, which is shown to be related to score statistics. An adaptive version, which includes weights based on the Kullback-Leibler divergence, improves its variable selection fea…

Statistics and ProbabilityGeneralized linear modelStatistics::TheoryMathematical optimizationProper linear modelGeneral MathematicsORACLE PROPERTIESGeneralized linear modelSPARSITYGeneralized linear array model01 natural sciencesGeneralized linear mixed modelCONSISTENCY010104 statistics & probabilityScore statistic.LEAST ANGLE REGRESSIONLinear regressionESTIMATORApplied mathematicsDifferential geometry0101 mathematicsDivergence (statistics)MathematicsVariance functionDifferential-geometric least angle regressionPATH ALGORITHMApplied MathematicsLeast-angle regressionScore statistic010102 general mathematicsAgricultural and Biological Sciences (miscellaneous)Group lassoGROUP SELECTIONStatistics Probability and UncertaintyGeneral Agricultural and Biological SciencesSettore SECS-S/01 - Statistica
researchProduct

Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models

2013

Summary Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the …

Statistics and ProbabilityGeneralized linear modelSparse modelMathematical optimizationGeneralized linear modelsVariable selectionPath following algorithmEquiangular polygonGeneralized linear modelLASSODANTZIG SELECTORsymbols.namesakeExponential familyLasso (statistics)Sparse modelsDifferential geometryInformation geometryCOORDINATE DESCENTFisher informationERRORMathematicsLeast-angle regressionLeast angle regressionGeneralized degrees of freedomsymbolsSHRINKAGEStatistics Probability and UncertaintySimple linear regressionInformation geometrySettore SECS-S/01 - StatisticaAlgorithmCovariance penalty theory
researchProduct

Extended differential geometric LARS for high-dimensional GLMs with general dispersion parameter

2018

A large class of modeling and prediction problems involves outcomes that belong to an exponential family distribution. Generalized linear models (GLMs) are a standard way of dealing with such situations. Even in high-dimensional feature spaces GLMs can be extended to deal with such situations. Penalized inference approaches, such as the $$\ell _1$$ or SCAD, or extensions of least angle regression, such as dgLARS, have been proposed to deal with GLMs with high-dimensional feature spaces. Although the theory underlying these methods is in principle generic, the implementation has remained restricted to dispersion-free models, such as the Poisson and logistic regression models. The aim of this…

Statistics and ProbabilityGeneralized linear modelMathematical optimizationGeneralized linear modelsPredictor-€“corrector algorithmGeneralized linear model02 engineering and technologyPoisson distributionDANTZIG SELECTOR01 natural sciencesCross-validationHigh-dimensional inferenceTheoretical Computer Science010104 statistics & probabilitysymbols.namesakeExponential familyLEAST ANGLE REGRESSION0202 electrical engineering electronic engineering information engineeringApplied mathematicsStatistics::Methodology0101 mathematicsCROSS-VALIDATIONMathematicsLeast-angle regressionLinear model020206 networking & telecommunicationsProbability and statisticsVARIABLE SELECTIONEfficient estimatorPredictor-corrector algorithmComputational Theory and MathematicsDispersion paremeterLINEAR-MODELSsymbolsSHRINKAGEStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaStatistics and Computing
researchProduct

DgCox: a differential geometric approach for high-dimensional Cox proportional hazard models

2014

Many clinical and epidemiological studies rely on survival modelling to detect clinically relevant factors that affect various event histories. With the introduction of high-throughput technologies in the clinical and even large-scale epidemiological studies, the need for inference tools that are able to deal with fat data-structures, i.e., relatively small number of observations compared to the number of features, is becoming more prominent. This paper will introduce a principled sparse inference methodology for proportional hazards modelling, based on differential geometrical analyses of the high-dimensional likelihood surface.

Proportional hazard modelling least angle regression differential geometry sparse inferenceSettore SECS-S/01 - Statistica
researchProduct

dglars: An R Package to Estimate Sparse Generalized Linear Models

2014

dglars is a publicly available R package that implements the method proposed in Augugliaro, Mineo, and Wit (2013), developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method proposed in Efron, Hastie, Johnstone, and Tibshirani (2004). The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve: a predictor-corrector algorithm, proposed in Augugliaro et al. (2013), and a cyclic coordinate descent algorithm, proposed in Augugliaro, Mineo, and Wit (2012). The latter algorithm, as shown here, is significan…

Statistics and ProbabilityGeneralized linear modelEXPRESSIONMathematical optimizationTISSUESFortrancyclic coordinate descent algorithmdgLARSFeature selectionDANTZIG SELECTORpredictor-corrector algorithmLIKELIHOODLEAST ANGLE REGRESSIONsparse modelsDifferential (infinitesimal)differential geometrylcsh:Statisticslcsh:HA1-4737computer.programming_languageMathematicsLeast-angle regressionExtension (predicate logic)Expression (computer science)generalized linear modelsBREAST-CANCER RISKVARIABLE SELECTIONDifferential geometrydifferential geometry generalized linear models dgLARS predictor-corrector algorithm cyclic coordinate descent algorithm sparse models variable selection.MARKERSHRINKAGEStatistics Probability and UncertaintyHAPLOTYPESSettore SECS-S/01 - StatisticacomputerAlgorithmSoftware
researchProduct